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Thanks

A special thanks to

Mikhail Zaslavsky, Schlumberger-Doll Research

Jörn Zimmerling, Delft University of Technology

and

Vladimir Druskin, Schlumberger-Doll Research
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Happy birthday

Happy birthday Vladimir!
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Introduction

Back in the day (late 80s, early 90s)

SLDM: Spectral Lanczos Decomposition Method

Fast convergence for parabolic (diffusion) equations

Applicable to lossless (hyperbolic) wave equation as well

Not many advantages compared with explicit time-stepping
(FDTD)
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Main research question

What happens if we include losses?

Lossy wavefield systems

Perfectly Matched Layers (PML, after 1994)
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Basic equations

First-order lossless wavefield system

(D +M∂t)F = −w(t)Q

Plus initial conditions

Dirichlet boundary conditions (no PML) included

Lossy wavefield system

(D + S +M∂t)F = −w(t)Q
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Maxwell’s equations

Field vector

F = [Ex ,Ey ,Ez ,Hx ,Hy ,Hz ]T

Source vector

Q = [Jsp
x , J

sp
y , J

sp
z ,K

sp
x ,K

sp
y ,K

sp
z ]T
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Maxwell’s equations

Medium matrices

M =

(
ε 0
0 µ

)
and

S =

(
σ 0
0 0

)
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Maxwell’s equations

Differentiation matrix

D =

(
0 −∇×

∇× 0

)
Signature matrix

δ− = diag(1, 1, 1,−1,−1,−1)
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Basic equations

Spatial discretization

(D + S + M∂t) f = −w(t)q

Order of this system can be very large especially in 3D

Discretized counterpart of δ− is denoted by d−
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Basic equations

Medium matrices (isotropic media)

S diagonal and semipositive definite
M diagonal and positive definite

Differentiation matrix

W step size matrix = diagonal and positive definite
Symmetry property

DTW = −WD
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Basic equations

System matrix for lossless media: A = M−1D

System matrix for lossy media: A = M−1(D + S)

Evolution operator = exp(−At)
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Basic equations

Lossless media: A is skew-symmetric w.r.t. WM

Evolution operator is orthogonal w.r.t. WM

Inner product and norm

〈x , y〉 = yHWMx ‖x‖ = 〈x , x〉1/2

Stored field energy in the computational domain

1

2
‖f ‖2

Initial-value problem: norm of f is preserved
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Lanczos algorithms

Lossless media: construct SLDM field approximations via
Lanczos algorithm for skew-symmetric matrices

FDTD can be written in a similar form as Lanczos algorithm

recurrence relation for FDTD
=

recurrence relation for Fibonacci polynomials
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Lanczos algorithms

Lanczos recurrence coefficients: βi

Comparison with FDTD: 1/βi = time step of Lanczos

Automatic time step adaptation – no Courant condition
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Lanczos algorithms

Lossy media: system matrix A = M−1(D + S) is no longer
skew-symmetric

Introduce

dp =
1

2
(I + d−) and dm =

1

2
(I − d−)
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Lanczos algorithms

Special case: S = ξdp

σ(x) = ξε(x) for all x belonging to computational domain

Exploit shift invariance of Lanczos decomposition

Basis for lossless media can be used to describe wave
propagation for lossy media (in this special case)
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Lanczos algorithms

Not possible for general lossy media

Matrix D is symmetric with respect to Wd−

DTWd− = Wd−D

System matrix A is symmetric w.r.t. WMd−
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Lanczos algorithms

System matrix A is symmetric w.r.t. bilinear form

〈x , y〉 = yHWMd−x

Free-field Lagrangian
1

2
〈f , f 〉
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Lanczos algorithms

Write f = f (q) to indicate that the field is generated by a
source q

Reciprocity:

Source vector: q = dpq, receiver vector r = dpr

〈f (q), r〉 = 〈q, f (r)〉

Source vector: q = dpq, receiver vector r = dmr

〈f (q), r〉 = −〈q, f (r)〉
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Lanczos algorithms

SLDM field approximations for lossy media can be constructed
via modified Lanczos algorithm

Modified Lanczos algorithm
=

Lanczos algorithm for symmetric matrices
with inner product replaced by bilinear form

Modified Lanczos algorithm can also be obtained from
two-sided Lanczos algorithm

Can the modified Lanczos algorithm breakdown in exact
arithmetic?
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PML

No outward wave propagation has been included up to this
point

Implementation via Perfectly Matched Layers (PML)

Coordinate stretching (Laplace domain)

∂k ←→ χ−1
k ∂k k = x , y , z

Stretching function

χk(k , s) = αk(k) +
βk(k)

s
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PML

Stretched first-order system[
D(s) + S + sM

]
F̂ = −ŵ(s)Q

Direct spatial discretization[
D(s) + S + sM

]
f̂ = −ŵ(s)q

Leads to nonlinear eigenproblems for spatial dimensions > 1
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PML

Linearization of the PML

Spatial finite-difference discretization using complex PML step
sizes

(Dcs + S + sM) fcs = −w(s)q

System matrix
Acs = M−1(Dcs + S)

V. Druskin and R. F. Remis, “A Krylov stability-corrected coordinate stretching method to simulate wave
propagation in unbounded domains,” SIAM J. Sci. Comput., Vol. 35, 2013, pp. B376 – B400.

V. Druskin, S. Güttel, and L. Knizhnerman, “Near-optimal perfectly matched layers for indefinite
Helmholtz problems,” SIAM Rev. 58-1 (2016), pp. 90 – 116.
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PML

What about the spectrum of the system matrix?
	
  

Re(λ) 

Im(λ) 

Lossless resonator 
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PML

Eigenvalues move into the complex plane
	
  

Re(λ) 

Im(λ) 

Complex scaling 
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PML

Stable part of the spectrum

	
  

Re(λ) 

Im(λ) 

Stable part 
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PML

Stability correction

	
  

Re(λ) 

Im(λ) 

Stable part 
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Stability-Corrected Wave Function

Time-domain stability-corrected wave function

f (t) = −w(t) ∗ 2η(t)Re
[
η(Acs) exp(−Acst)q

]
Complex Heaviside unit step function

η(z) =

{
1 Re(z) > 0

0 Re(z) < 0
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Stability-Corrected Wave Function

Frequency-domain stability-corrected wave function

f̂ (s) = −ŵ(s)
[
r(Acs, s) + r(Ācs, s)

]
q

with

r(z , s) =
η(z)

z + s

Note that f̂ (s̄) = ¯̂f (s) and the stability-corrected wave
function is a nonentire function of the system matrix Acs
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Stability-Corrected Wave Function

Symmetry relations are preserved

With a step size matrix W that has complex entries

These entries correspond to PML locations
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Stability-Corrected Wave Function

Stability-corrected wave function cannot be computed by
FDTD

SLDM field approximations via modified Lanczos algorithm

Reduced-order model

fm(t) = −w(t) ∗ 2‖M−1q‖η(t)Re [Vmη(Hm) exp(−Hmt)e1]
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Stability-Corrected Wave Function

m = 300
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Stability-Corrected Wave Function

m = 400
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Stability-Corrected Wave Function

m = 500
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Stability-Corrected Wave Function

Photonic crystal
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Stability-Corrected Wave Function

m = 1000 vs. 8200 FDTD iterations
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Stability-Corrected Wave Function

m = 2000 vs. 8200 FDTD iterations
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Stability-Corrected Wave Function

m = 3000 vs. 8200 FDTD iterations
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Extensions

Approach has been extended for dispersive media in

J. Zimmerling, L. Wei, H. Urbach, and R. Remis, A Lanczos
model-order reduction technique to efficiently simulate
electromagnetic wave propagation in dispersive media, Journal
of Computational Physics, Vol. 315, pp. 348 – 362, 2016.

Extended Krylov subspace implementations are discussed in

V. Druskin, R. Remis, and M. Zaslavsky, Journal of
Computational Physics, Vol. 272, pp. 608 – 618, 2014.
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Current and future work

Rational Krylov field approximations
No stability-correction required

Phase-preconditioned rational Krylov methods
Large travel times

More on this in the coming week!
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Thank you for your attention!
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