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Happy birthday

e Happy birthday Vladimir!
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Introduction

@ Back in the day (late 80s, early 90s)

SLDM: Spectral Lanczos Decomposition Method

Fast convergence for parabolic (diffusion) equations

Applicable to lossless (hyperbolic) wave equation as well

Not many advantages compared with explicit time-stepping
(FDTD)
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Main research question

@ What happens if we include losses?
@ Lossy wavefield systems
o Perfectly Matched Layers (PML, after 1994)
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Basic equations

First-order lossless wavefield system

(D + M) F = —w(t)Q

Plus initial conditions
Dirichlet boundary conditions (no PML) included

Lossy wavefield system

(D+ S+ M) F = —w(t)Q
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Maxwell's equations

o Field vector

F = [Exa Eya Ez, Hxa Hy: HZ]T

@ Source vector

_ T
Q = [P, S, S, K, K3P, K]
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Maxwell's equations

@ Medium matrices

and
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Maxwell's equations

@ Differentiation matrix

@ Signature matrix

5~ =diag(1,1,1,—1,-1,-1)
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Basic equations

@ Spatial discretization
(D+S+ Moy)f =—w(t)g

@ Order of this system can be very large especially in 3D

@ Discretized counterpart of ™ is denoted by d—

10
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Basic equations

@ Medium matrices (isotropic media)

e S diagonal and semipositive definite
e M diagonal and positive definite
o Differentiation matrix

o W step size matrix = diagonal and positive definite
e Symmetry property

D™W = —-wWD

11
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Basic equations

@ System matrix for lossless media: A= M~1D
o System matrix for lossy media: A= M~1(D + S)

e Evolution operator = exp(—At)

12



Introduction

Basic equations
Lanczos algorithms
PML

Basic equations

Lossless media: A is skew-symmetric w.r.t. WM

Evolution operator is orthogonal w.r.t. WM

Inner product and norm
(y) =y"WMx ] = (x, )M

@ Stored field energy in the computational domain

1
IR

Initial-value problem: norm of f is preserved

13
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Lanczos algorithms

@ Lossless media: construct SLDM field approximations via
Lanczos algorithm for skew-symmetric matrices

@ FDTD can be written in a similar form as Lanczos algorithm

recurrence relation for FDTD

recurrence relation for Fibonacci polynomials

14
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Lanczos algorithms

@ Lanczos recurrence coefficients: [3;
e Comparison with FDTD: 1/53; = time step of Lanczos

@ Automatic time step adaptation — no Courant condition

15
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Lanczos algorithms

o Lossy media: system matrix A= M~1(D + S) is no longer
skew-symmetric

@ Introduce

1 1
P =(I+d7) and d"=_(I—d")

16
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Lanczos algorithms

@ Special case: S = £&dP

o(x) = &e(x) for all x belonging to computational domain

@ Exploit shift invariance of Lanczos decomposition

@ Basis for lossless media can be used to describe wave
propagation for lossy media (in this special case)

17
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Lanczos algorithms

@ Not possible for general lossy media

@ Matrix D is symmetric with respect to Wd™~
D"Wd~ = Wd™D

@ System matrix A is symmetric w.r.t. WMd~

18
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Lanczos algorithms

@ System matrix A is symmetric w.r.t. bilinear form

(x,y) =y WMd~x
o Free-field Lagrangian

(f,f)

10



Introduction

Basic equations
Lanczos algorithms
PML

Lanczos algorithms

e Write f = f(q) to indicate that the field is generated by a
source q

@ Reciprocity:

e Source vector: g = dPq, receiver vector r = dPr

(f(q),r) =(q,f(r))

e Source vector: g = dPq, receiver vector r = d™r

(f(q),r) = —(q,f(r))

20
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Lanczos algorithms

@ SLDM field approximations for lossy media can be constructed
via modified Lanczos algorithm

Modified Lanczos algorithm

Lanczos algorithm for symmetric matrices
with inner product replaced by bilinear form

@ Modified Lanczos algorithm can also be obtained from
two-sided Lanczos algorithm

@ Can the modified Lanczos algorithm breakdown in exact
arithmetic?

21
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PML

@ No outward wave propagation has been included up to this
point

Implementation via Perfectly Matched Layers (PML)

Coordinate stretching (Laplace domain)

Ok «— leak k=x,y,z

Stretching function

(k) = o (k) + 2

29
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PML

@ Stretched first-order system

[D(s) + S + sM|F = —iw(s)Q
@ Direct spatial discretization

[D(s) + S + sM] f=—w(s)g

@ Leads to nonlinear eigenproblems for spatial dimensions > 1

272
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Linearization of the PML

Spatial finite-difference discretization using complex PML step
sizes
(Des + S + sM) s = —w(s)q

System matrix
Ais = MY (Des + S)

V. Druskin and R. F. Remis, “A Krylov stability-corrected coordinate stretching method to simulate wave
propagation in unbounded domains,” SIAM J. Sci. Comput., Vol. 35, 2013, pp. B376 — B400.

V. Druskin, S. Giittel, and L. Knizhnerman, “Near-optimal perfectly matched layers for indefinite
Helmholtz problems,” SIAM Rev. 58-1 (2016), pp. 90 — 116.

24
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PML

@ What about the spectrum of the system matrix?

Im(A)

Re(A)

Lossless resonator

25
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PML

@ Eigenvalues move into the complex plane

Re(A)

Complex scaling
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PML

@ Stable part of the spectrum

Im(A)
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@ Stability correction
Im(A)
°
°
°
°
°

Stable part

Re(A) +
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Stability-Corrected Wave Function

@ Time-domain stability-corrected wave function

f(t) = —w(t) * 2n(t)Re[n(Acs) exp(—Acst)q]

@ Complex Heaviside unit step function

~J1 Re(z)>0
n(z) = {0 Re(z) < 0

20
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Stability-Corrected Wave Function

e Frequency-domain stability-corrected wave function

f(s) = —w(s)[r(Acs, s) + r(Acs, 5)] q
with
n(z)
Z+s

o Note that f(5) = 7(s) and the stability-corrected wave
function is a nonentire function of the system matrix Acs

r(z,s) =

20
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Stability-Corrected Wave Function

@ Symmetry relations are preserved

@ With a step size matrix W that has complex entries

@ These entries correspond to PML locations

21
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Stability-Corrected Wave Function

@ Stability-corrected wave function cannot be computed by
FDTD

@ SLDM field approximations via modified Lanczos algorithm
@ Reduced-order model

fmn(t) = —w(t) = 2| M~ q|[n(t)Re [Vimn(Hm) exp(—Hmt)e1]

29
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Stability-Corrected Wave Function
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Stability-Corrected Wave Function

e m=400

Electric Field Strength [V/m]

1
Time [s]

x10°

24



Introduction
Basic equations
Lanczos algorithms

PML

Stability-Corrected Wave Function

e m =500
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Stability-Corrected Wave Function

@ Photonic crystal
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Stability-Corrected Wave Function

@ m = 1000 vs. 8200 FDTD iterations

Electric Field Strength [V/m]
Lo
T T
| |
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Stability-Corrected Wave Function

@ m = 2000 vs. 8200 FDTD iterations

Electric Field Strength [V/m]

28
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Stability-Corrected Wave Function

@ m = 3000 vs. 8200 FDTD iterations

Electric Field Strength [V/m]
Lo
T T
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Extensions

@ Approach has been extended for dispersive media in

e J. Zimmerling, L. Wei, H. Urbach, and R. Remis, A Lanczos
model-order reduction technique to efficiently simulate
electromagnetic wave propagation in dispersive media, Journal
of Computational Physics, Vol. 315, pp. 348 — 362, 2016.

o Extended Krylov subspace implementations are discussed in

e V. Druskin, R. Remis, and M. Zaslavsky, Journal of
Computational Physics, Vol. 272, pp. 608 — 618, 2014.

40
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Current and future work

@ Rational Krylov field approximations
No stability-correction required

@ Phase-preconditioned rational Krylov methods
Large travel times

@ More on this in the coming week!

41
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Thank you for your attention!

490
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